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Introduction

In our earlier studies, summarized in the final report for
AFCRL-TR-75-0179 (Madden, 1974), it was shown that for relativély
competent rocks in the near surface there were divergencies be-
tween the trends of the electrical and mechanical properties.
This was believed to be due to the strong influence of joints
and faults on the elastic properties as compared to the micro-
crack control of the electric properties. Their differences
become reduced for rocks which have been weakened by stress
cycling, which we believe is due to the increased influence of
microcracks on elastic as well as electric properties in such
rocks. This present study has thus concentrated on developing
a better quantitative understanding of how the developing micro-
crack population that is associated with highly stressed rocks
effects the electrical and mechanical properties of such rocks.
Our approach has been to extend our earlier work on random net-
works and its application to the electrical properties of the
microcrack structure in order to investigate the role of an in-
creasing crack population on these electrical properties. We have
also started to extend the application of these concepts to in-
clude mechanical properties. A most important problem in this
area is that concerned with crack development under stress and
the onset of failure. This is a much more difficult problem

since it is essentailly non-linear, but one which we believe is

well suited to our random network approach.
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In the first section we investigate the modifications in our
theory of the electrical conductivity of an interconnected crack
system that is necessary to account for the effects of increasing
the crack population. New cracks introduced into a system of
already interconnected cracks play a very different role than
the original cracks and cause a remarkable increase in the elec-
trical conductivity. These concepts also expose a similar effect
that results from interactions between cracks of different
length scales. In the second section we extend our earlier work
on streaming potential measurements and analysis in order to try
and clarify the role of surface conductivity in rock electrical
properties. In the third section we introduce the principals
needed for making network approximations of elastic properties.
The fourth section was to be concerned with the application of
random networks to the rock failure problem. The numerical
studies are not complete enough to report on here, and will be
reported later. The work is far from complete but holds promise
for greatly aiding our quantitative understanding of failure and
rock strength properties. The last section summarizes our
conclusions about the interconnection between electrical and

mechanical properties.
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Microcrack Electrical Conductivity Effect
of Stress Induced Cracks

Introduction

In our final report of project 7639 we outlined a theory

2 which can be used for predicting the electrical conductivity
; of porous media given the distribution function of the porous
zone widths. This theory could be an important breakthrough
ir gaining a quantitative understanding of rock electrical
properties, but it needs testing on real materials. Data
provided by Kate Hadley (Hadley, 1975) on the crack parameter
distribution functions of stressed and unstressed Westerly

granite should provide us with the opportunity of testing

e s A et e s s

and improving the theory.
Figure 1 shows the crack width distribution functions
determined from electron scanning microscope examination of

surfaces of Westerly granite which had undergone various

e Vo
e

degrees of stressing. This figure clearly shows the large
increase in crack density creaﬁed by stressing, and also shows

an increase weighting towards the narrower cracks as the stress

PR
BRI PN M TNED A WA M 8 1 1S o Qg

levels increased. The narrowest cracks could not be seen by
| the scanning microscope because of the coating used, so the
. .0055 and .0017u distributions have been inferred by extra-
§ polation. In the unstressed rocks the distribution function
is decreasing beyond .173yu, but‘the stressed rocks show
increasing densities up to the limit of resolution of the

scanning microscope which is about .03u.
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Q‘ : Conductivity Theory

Y A 0 MR

Our previous studies of random network models of porous

zone conduction paths indicated that different networks gave

quite similar results when the distribution function of the
}z element values was smooth. They further showed that the ]
geometric mean was a good estimate of the final conductivity

in such cases.

E | B
3 Y = Y, (1)
i

In these network models the element conductances were equal

to the conductivity of the zone being represented by the

element and thus proportional to the width of the porous zone
involved. This width also determines the porosity contribution
of the porous zone. The width however does not influence the
frequency of occurrence of the porous zones (which we assume

are more crack like than tube like) and therefore we‘have

¢O./wW,

i e 5 N ¢

: Plws) = s(67wT (2)

H 3 g ]

i

i wy = width i :

: ¢; = porosity associated %

! . with w, .
P(w,) = probability of i

i elemental conduction
¢ path having width Wi




Since the conductivity of the elemental zones is proportional
to its width one should have a proportionality between
porosity and conductivity which might be given as

03 5 PAW ¥ /0cruia (3)
From (2) and (3) we would then infer

Y, = °f1uid"i‘§‘4’j/wj) (42)

This result needs some adjustment, however, since a constant
width distribution would give a resultant conductivity equal
to the fluid conductivity x porosity. This would only be
true if all the crack and pore zones were aligned parallel
to the current flow, and is the result of not properly
accounting for the volume associated with conduction paths
aligned perpendicular to the current flow. The case of a
single width distribution should optimize the total conductiv-
ity and lead to a result close to the Hashin upper bound.
Using this result as a correction factor we would modify
(4a) to

¥, % eiiaia [(2/(3-¢))wi§(¢j/wj)1 (4b)

¢ = total porosity = £¢j
3

Given the crack or pore zone width distribution as ¢j(wj)
one can arrive at a conductivity estimate using (4b), (2),
and (1). The surface conductivity effect can also be

included by adding to each Yi an appropriate fraction that

e B




}} ; represents the surface conductivity contribution relative
to the pore fluid contribution. Table I shows the resultant
parameters that apply to the unstressed Westerly granite

assuming a zeta potential of 75 mv.

9 i Table I

Crack Conductivity Parameters for Westerly Granite

Crack Width Y(wi)/0eyuia  YWi)/%14ig

F in u Prob (w,) Saturated NaCl 10 'N NaCl
5.5 .003 s .0555 .0566
1.1 .030 .0171 .0182
.55 .097 .00555 .00649
E | 37 .439 .00171 .00266
| .055 .225 .000555 .00150
3 .017 AE7 .000171 .00111
& .0055 .059 .0000555 .000555
“é .0017 .020 .0000171 .000171

3N fluid resistivity, we predict a

| Using 50 0-M for the 10~
resistivity of 24,000 2-M for the granite and a formation

factor of 1143 which results in an effective fluid resist-
5? : ivity of 21 @-M. This can be compared to Brace's measure-
; ments extrapolated to zero pressure (Brace et al, 1965) on

¥ : Westerly granite which gave an average resistivity of

7.000 @~M and a formation factor of 614 which results in an

N—

e effective fluid resistivity of 11 @-M. The formation factors
are in rough agreement. The larger difference in the
resistivities with dilute solutions may reflect an error

in the experimental data. The observed apparent fluid
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resistivity of 11 Q-M seems difficult to explain by surface
conduction with reasonable zeta potentials and suggests that
the pore fluids were somewhat contaminated.

A check on this was made by a series of experiments on Wes-
terly granite that attempted to eliminate any previous salt
contamination. Two approaches were used. In one, samples were
placed in distilled water to allow diffusion of the contamina-
tion out of the sample. This is a slow procedure and there is
some possibility that the highly oxidizing environment in the
laboratory owuld cause some decomposition of the samples. After
an apparent steady state was reached the samples were resatura-

3N solutions and their resistivity measured. This

ted with 10~
procedure only resulted in modest changes in the resistivity,
from 7,000 Q-M before desalting to 10,000 Q-M after. A more
satisfactory approach was to decontaminate the samples by flushing,
as a steady state was reached on a much shorter time scale. This
treatment significantly increased the rock sample resistivities,
up to 18,000 Q-M, and conclusively showed that the samples were
originally contaminated.

The porosity of these cracks amounts to only 0.32% which is
considerably less than the total porosity, which is typically 1%
for Westerly granite. Large cracks would have only a small chance
of having been intercepted in the area of only .45mm2 used in the
crack study. The number density of any such large cracks would
be so low, however, that as long as they do not form an inter-

connected set by themselves, they would only lower the predicted

resistivity by a few percent.
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Complications of the Simple Model

When the same procedure is applied to the data on the
stressed rocks very poor predictions are obtained. The
great increase in the relative number density of the very
narrow cracks offsets the effect of an increase in the
total crack porosity and in one case an actual lowering
of the rock conductivity is predicted. There is an obvious
shortcoming to the procedures outlined above when applied
to these stressed rocks, which points out a necessary
modification of the theory.

The stressed rocks have a new crack population which is

added on to the preexisting population. Obviously the new

cracks have certain topological restrictions relative to their
interactions with the preexisting cracks. These restrictions
are ignored, however, when the whole population is lumped
together. Thus, for instance, no new crack can act in series
between two previously connected cracks. Something similar
must also be taken into account when considering interactions
between cracks of different length scales. The cascading
process that is the essence of our random network models
allows interactions between different size scales, but only
by cascading from one scale to the next. This concept is
valid for three dimensional zones as different scale sizes
cannot interact directly since they occupy different volumes.
Cracks and pore zones are essentially two dimensional however
and different scale sizes can occupy the same volume and thus

interact directly. The cascading process tends towards the
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10.

geometric mean which is a compromise between series and
parallel interactions, but direct interactions are more
parallel like.

We can take account of direct interactions betwecen scale
sizes by allowing interconnected zones of one scale to act
in parallel with individual elements of the next larger scale
as shown in Figure 2. Using the symhol << >> for the random
network type averaging which we approximate by the geometric
mean and indicating scale size by superscripts we have

¥ = <<...c<¥Y + <<¥P 4 <<y¥%> 3> 55>...>> (5)

Y scale > B scale > a scale

The same sort of procedure must also be used to consider

the interaction of the new cracks with respect to the pre-
existing ones. At each scale level the new cracks must be
considered acting somewhat in pagﬁllel with the old cracks.
éince the process indicated in equation (5) greatly decreases
the effective width of the conductivity distribution at any

length scale an approximation to the new and old crack inter-

action is given by

= Y Y B B
Y <<...<<Ynew + <<yold + <<Ynew + <<yold + (6)
<<Y§ew + <<Ygld>> - b 5 MG S e

Y scale > B scale > a scale

The use of equation (6) requires the knowledge of the

length as well as the width distribution of the cracks, and

PPN ST S
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the identification of the old and new crack populations.

§ For stressed samples the prestress crack population had to
be estimated from the data on the usntressed sample. These ! ;
breakdowns are shown in Figures 3, 4, and 5. The results

of equation (6) applied to this data are given in Table II.

These results show that the changes in electrical conductiv- .
ity due to stress damage exceed the change in crack porosity.

The actual magnitude of the change is quite comparable to

the values we obtained on a suite of Chelmsford granites as

reported previously. 1

Table II

Conductivity Estimates on Westerly Granite

Crack Formation Peffective
Sample Porosity Factor (500~-M fluid) of fluid
Unstressed .32% 783 19,100 24.4 T
TS5 prestressed .37% 1250 28,500 22.8
(assumed)
T5 stressed .40% 1010 18,700 18.5 3
to 65% of failure
W5 prestressed «32% 9200 25,200 28
(assumed)
E | W5 stressed .96% 245 6,420 26.2
?] to 100% of failure
i ]
; The predicted conductivity for the unstressed sample was also .
brought more in line with laboratory measurements by the
extensions outlined above. G
These rocks also posess a further porosity not sampled in
the crack data. Large cracks and pores could have been missed
4
: in the small area used for the crack study. but such paths would

have such low probabilities relative to their volumes that their

it et

b | contribution to the rock conductivity is minor provided they do
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not form an interconnected system by themselves.
When the simpler interconnection model is applicable, one
should find simple relationships between different flow

properties which share the same pathways. One such flow

property is permeability. Assuming crack like geometries the
fluid conductivity of a path is proportional to the (width)3/12.
F‘ Whenever the geometric mean is a good average for the network

properties we should expect the electrical and fluid flow

properties to ratio as the square of the geometric mean path
width. Using the permeability unit of Darcy we have |
k in darcies = <<:wi>>/12F.F. (7

<< w1>> is the geometric mean width in u
F.F. is the formation factor
The unstressed Westerly granite had a geometric mean crack

width of .09y which using (7) would lead to an estimate of 860

nanodarcies for the permeability. Such low permeabilities are 1

i difficult to measure but values of 500 and 750 nanodarcies have
E been reported for Westerly granite (Brace, 1968, and Batzle, 1976).

Some data on sedimentary rocks, in which the pore width

T

distribution was estimated by capillarity measurements and for
which conductivity and permeability values were determined, was

also used to test the theory. Figure 6 shows the pore width

TR TR T TN

distribution data and the comparison between the measured and '

predicted flow properties. There is some scatter in the

measured peremability data which is probably due to the size

T T T TR T

scale of the sample not being adequate to obtain a homogeneous
i averaging, but in general the predicted properties fall in line

with the measured values.

i il il i st " ikl . ’ o 4
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18.

Zeta Potentials Reexamined

Certain discrepancies have occurred concerning our
estimates of the surface conductivity contribution to rock
electrical conductivities and the associated mineral Zeta
potentials. Conductivity measurements on granite samples
saturated with tap water appeared to show a very significant
surface conductivity contribution, but our earlier measure-
ments on streaming potentials gave very small estimates of
the Zeta potential. This has led us to take a second look at
the problem. There would appear to be three possible causes
of the observed discrepancies. First, the rock samples might be

contmainated with enough salt to upset the surface conduc-
tivity determinations. Secondly, the assumptions made in the
theoretical derivation of the streaming potential - Zeta
potential relationship might break down in our examples.
Thirdly, the experimental technique used for measuring the

streaming potential could be causing an error.

The success of our random network models in estimating the
fqrmation factor of Westerly granite gives us some confidence
in using the model to examine the surface conductivity contri-
bution. When the value of 75 mv was used for the Zeta potential,
the model predicted a conductivity still some two and a half
times smaller than the measured values using tap water. To make
the model conductivities fall in line with the observations one

would require a Zeta potential of well over 100 mv. This seems
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like an unlikely value and therefore we examined the possibility
of salt contamination.

Figure 7 shows the results of diffusion experiments for
granite samples immersed in distilled water. The 15,000 OHM
meter value reached after 90 days is probably too 16§ for a
distilled water saturation, and is indicative of the slow
diffusion through rocks. The effective diffusivity of a rock
is proportional to its electrical conductivity, but the volume
participating in the diffusion is given by the porosity. Thus
the effective length of the diffusion paths are their actual
length x formation factor x porosity. For Vesterly granite the
effective length is about a factor of 10 greater than the
actual length so that the diffusion time for one centimeter
penetration in about 100 days.

When these samples weredried by evaporation and resaturated
in tap water the resistivity was reduced to 10,200 Q-M. Since
the salts left in the rock after the diffusion experiment were
still present, this result indicated the tap water saturated
samples should have considerably higher resistivities.

Subtracting off the conductivity contribution remaining
after the diffusion experiment leaves 30,000 2-M as the tap
water component of the resistivity. One still cannot untangle with
this data the surface conductivity contribution from the salt
contamination, however.

Finally, a series of experiments were carried out using
hydraulic flushing that gave consistent reéults and firmly
establish the influence of contamination on the earlier

measurements. Using permeability measuring apparatus, distilled

Gty et
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water was forced through a Westerly granite sample about

2 cm thick by a 50 bar pressure. Over a period of thirteen

days, the resistivity increased from 10,000 Q-M to 30,600 Q-M.

On saturating the flushed out sample with tap water the resis-
tivity went to 18,000 Q~-M. Forcing the tap water (equivalent
to 10'3 N salt solution) through the sample for an additional

fifteen days did not change the resistivity appreciably.

TABLE III

Desalting Experiments on Westerly Granite

Resistivity Treatment

6,000 Q~-M tap water saturation

10,200 diffusion flushing (100 days)
and resaturating

18,800 distilled water flow flushing
(13 days) and resaturating

18,000 tap water flow flushing
(15 days)

As mentioned in the first chapter a Westerly granite
resistivity of 18,000 Q-M with tap water saturation is quite
compatible with an effective Zeta potential of 75 mv. None of
our earlier attempts to determine the Zeta potential from
streaming potential measuremetns gave results anywhere as near afL
large as this value. Table IV reviews some of these older
measurements and also includes more examples. These measurementf‘
were made on crushed samples using about one or two atmospheres

§ of pressure drive.
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At first we thought that limitations in the streaming poten-

tial theory could be at fault. The usual theory assumes a
Piosseuille flow drags the diffuse layer setting up a potential
which causes a counter electric flow which just balances the
convected electric flow. The effect on the fluid flow due to
the electric field is ignored. This effect can be incorporated
in the theory, however, by adding an electric drag force, (JE, to

the Navier-Stokes equation
dzv(x)
N——— + p(x)E = -VP 2+1
dx2
the space change,p , which is convected by the flow is determined
by Poisson's equation

2
d”¢ (x)
e__j__ 2.2
dx
Using 2.2 and 2.1 and the boundary conditions

Q(x)=-

- =0

we obtain by integration the velocity profile

v(x) = -Z-}:-(xz-az) e %% [ (R) =6 (x) ] 2.4

The potential ¢ can be determined form Poisson's equation (2.2)

and the Boltzmann equation
-¢/kT

n,=n.e
i 6/KT

Nn_=n.€

Q =z n,-Z_n_ 2.5

In the case of a single binary ion pair this has an exact
solution

v
2

2
e In, A2, X=1n
(ekT i0 1)

(@ZEO/2KT, )\ Zedo/2KT_

zZed /2kT-1Xe

1)
)

ZE¢°/2kT:I

(e

do =0 (x=0) Zeta potential
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with g = 2(@§)yzsinh(§%§) e

From these results a more exact streaming potential theory

can be developed. The convection current due to the [luid
motion is S

_ R ; !
lconvection —jnp(x)v(x)dx 2.9 . ;

which from 2.2 and 2.4 can be written

2 2 |
convectlon j‘_eVP (x R ) d + SE (¢(R)-¢(x»g—%))dx 2.10 i
2R N ax® n dx

Integrating by parts and using the boundary conditions 2.3 and 2.7

R R

i 2

/ o L aVPERds gVPj EEfd 2

1convection B - ¢(X)§x + —ﬁ—ﬁ(a%) dx 2.11
-R -

The last term is the modification due to the electric drag
on the fluid. Using tap water parameters we find that this term
is not important as long as the channel widths, 2R, are large
compared to a Debye length (.0lu). This same restriction applies
to ignoring the second term in (2.11) and also to ignoring the
surface conductivity contribution to the conduction current. We
used crushed samples in order to make the channel widths large
and thus we would not predict any difficulty with the usual
streaming potential theory. This simpler theory gives the result
E/Vp = €¢o/n0 2.12
The use of wide channels avoids a difficulty due to surface
conduction, but it opens up the possibility of a different problem,

turbulence. The turbulence regime is associated with high

i L SRR S SR S SERL e ST




Reynolds numbers. The Reynolds number is defined as

where  stands for fluid density

v mean flow velocity
d channel width
n viscosity

Assuming Poisseuille flow we can rewrite (2.13) in terms of

the applied pressure gradients

3
R=T% é%- L for cracks (2.14a)
n? width = w
length = L
3
R= 7 9—% R—ﬂ% (2.14b)
for tubes
radius = R
length =L

For tubes the critical Reynolds number is between 2000 and 60,000
and for two dimensional channels it is between 900 and 5,000. It
seems reasonable to expect turbulence to be set up more easily,

however, when the pathways are uneven and tortuous. Using typical

values pertaining to the measurements reported in Table 1V,

é% = 5x105 Newtons/M3
p = 103 Kgm/M3

n= 10" Newton-sec/M2
we should expect turbulence to be well developed for widths of
200-300u. Since the crushed samples included grain sizes from
60 to 1000u the possibility of turbulence having been present is
very real. The effect of turbulence on electrokinetic phenomena
is probably complex. One can expect an enhanced viscosity called
eddy or turbulent viscosity, and this should act to lower the

streaming potential according to 2.11 . The addition of an eddy
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diffusion on top of the molecular diffusion could unbalance the
Debye zone and cause it to expand, however, which would

increase the zeta potential. Measurements were there fore under-
taken at lower pressure gradients in order to reduce the
turbulence effects. These measurements gave consistently

higher streaming potentials but the inferred zeta potentials
still seem too low. It is not clear that we have prevented
turbulence even at pressures of only one-tenth of an atmosphere,
and there are hints that higher streaming potentials would be
obtained at even lower pressure gradients. Figure 8 shows some
of these results. More work is needed to establish satisfactory
methods of measuring zeta potentials, but at this point we have
to stick with our model derived estimates of zeta potenctials

in the vicinity of 75 mv.
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III

Network Representations of Elasticity in a Cracked Solid

A transmission system is an interconnected system through
which current flows as driven by the voltage differences through-
out the system. The current is divergenceless and the voltage
gradients give a curl free electric field. A scalar relation-
ship exists between the electric field and the current which
determines the conductances in the transmission system. Any
physical system which has such a relationship between curl iree’
fieldsand divergenceless fieldscan be modelled by a transmis-
sion system. A finite elgment network is simply the exact
representation of the difference equation approximation of the
system.

A trivial example of such approximations is a network
analog of electrical conductivity, which we used to study
the rock electrical conductivity problem. In other problems
the fields in gquestion may not have the necessary curl free
and divergence free properties. In many cases, however, it
is still possible to obtain network analogies. First it is
possible to redefine the vector components, and secondly, it
is possible to bring in another dimension in order to mold
the physical equations into a transmission system form. Static
elasticity equations fall in the first category as the stress
balance equation has the form of a divergence and the displace-~
ment vector components can be redefined as scal:r fields. The
network that results, however, is more complicated because of

the tensor nature of the stress field. 1In two dimensions the

isotropic elastic equations can be written

T

>xv v
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TXX A+2u ﬂ 5 U] 0 N s [Ux

= + +
Tzx 0 u x;_pz Iy a2 uz| (3.1a)
Tx2 0 )] s UX] Pu 0 s Ux]

e 8x + 8z
Tz2 A 0 Uz 10 A+2p Uz (3.1b)
s Tx;{‘ 8 iﬂi‘xz '0]
T lngy] 0% | o]

zx| {Tzz| 10} {3.2)

Txx and Tzx represent x directed current variables and Txz and
Tzz represent z directed current variables, while Ux and Uz are
voltage variables. Txx, Txz, and Ux form one transmission system
and Tzx, Tzz, and Uz form another one, but the two systems are
coupled together by symmetric terms. The difference equation
approximation will therefore lead to a two-level planer network.
These networks without the intraconnections between levels are
shown in Figure 9. The node points are assumed to lie on the
boundaries of rectangular zones, each zone having its own elastic
constants. The conductance elements between nodes are therefore
averages of the elastic properties on the two sides of the Boun-
dary. The negative sign of these conductances arises from our
convention of calling tension a positive stress. If the grid
spacirg is not square the vertically directed elements should

be modified by the factor Ax/Az and the horizontally directed
elements by the factor Ax/Az. The cross coupling elements can
be determined using circuits such as that shown in Figure 10.

The result is shown in Figure 1ll. No modifications are needed

for these elements when the spacing is not square.
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In order to investigate the role of cracks we need an

efficient way to represent them in the network analog. In

the electric problem this was achieved by having the network
represent the crack contributions and ignoring the matrix which

is a non-conductor. In the mechanical problem we must have

both the crack and the matrix represented. This can be readily

accomplished for a restricted set of crack orientations. We
observe that a crack has no stresses on its surface and that
points facing each other across the crack can move independently.

This effect is produced by splitting node points apart and not

allowing any direct connections between the two halves. The

crack essentially acts as an open circuit in the network

decoupling the regions on opposite sides. The resulting net-

works for three different crack orientations are shown in

Figures 12~14, Since these networks only involve interconnec-

tions to neighboring rows and columns one can easily compute

the network solutions by computing the network row admittance,

a row at a time, starting from the bottom and working up. The

Ux and Uz nodes of the same physical position can be considered

as different nodes but of the same row.

If we dgfine the interconnection conductance matrix of
the M'th row as ng and the intraconnection conductance matrix
between the n'th and m'th rows as ng, and the current coming

into the m'th row from above as 12, then we have

n nm
ot %’ xiJ(vn v + &yt ] - v (3.3)

1

=% ¢0%

zij

T T HE P

v; - V’“) (3.4)
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T80 vwis vy V" G.3a)

o, 50" am YTy /N 1 ™ (348.)
Ty VbV TV
The network input admittance at the mth row is defined as

m m m
1% = yz vV (3§

Using(3.6) in(3.4a) gives

(Y; + T, )-I(Y ) 6.7)

Using(3.7) in(3.3a)gives our desired relations between the
admittance matrix of one row and the admittance matrix of the
previous row.
n _ A An Am am /s om nm -t sy "
I% = [Sx b +Sz "yz (Yz + Ty 2 ) J\/ (3§

=[S TR )

Using (3.8a)one cascades up through the rows and from the final
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Yz one obtains the input currents given the applied voltage.
These currents and voltages tgen can be used to work back
down the network determining the voltages and currents in
every row, using(3.7) and (3.8).

As an example of such calculations we numerically dupli-
cate a common laboratory measurement, uniaxial loading of a
rock sample. The friction between the rigid piston and the
rock sample prevents any appreciable horizontal strain at the
piston boundary while the sides of sample are unconstrained.
This results in non-uniform stresses and the experimentalists
go to great pains to overcome this effect. The numerical
results of such a loading are shown in Figures 15 and 16.
Numerically one could install an ideal material between the
piston and the sample that would allow the rock sample to

expand uniformly throughout the sample length.
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conclusions

Superficially we can state that the electrical properties
and mechanical properties are related because they are both
influenced by the presence of flaws in the rock matrix. On
closer examination of rocks, both in situ and in the laboratory,
many contradictions to a simple relationship were observed.

Such a result can be interpreted from a network point of view.

In the electrical properties case the cracks form an interconnected
conductive system and thus the rock matrix which is an insulator
can be eliminated from‘the system. The resulting conductivities
depend largely on the crack width distribution. 1In the elastic

case the cracks act as open circuit zones. This causes the rock
matrix to be an important part of the system and makes the

thickness of the cracks immaterial. (The thickness is only a factor
when crack closure is being investigated). Since the electrical and
mechanical properties depend on different crack parameters and

since the geometry of the cracks have adjoint effects with respect
to the electrical and mechanical properties, it is not surprising
that the interrelationship between these properties is not simple.
Therefore, a good deal of apriori information is necessaiy before
one property can be used to predict the other.

As a stressed rock approaches its failure point, the crack
population goes through a dramatic change that causes important
deviations in the rules that govern the conductivity of the cracks.
At this point the empirical relationships between electrical and
mechanical properties begin to follow a more consistent pattern.

It is important, however, to develop a theoretical understanding
of the role that this same crack population plays in the

ultimate mechanical failure of a rock. Clearly some drastic change
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in the crack interrelationships must occur. Simple concepts easily

e o s

illustrated by network models explain the early crack development.

—-—

f% ! Stress intensification factors associated with the presence of
j cracks cause local tensile stresses to occur when unequal principal
stresses are applied even when both principal stresses are compres-
. sive. These local stresses cause the extension and development of
cracks alligned with the maximum principal stress that is observed
both electrically, as an anisotropic conductivity increase, and

directly, by means of scanning electron microscope images. The

failure, however, usually takes on the appearance of shear failure
and is inclined to the principal stress axis. A critical question

then is that concerning the role of the tension cracks in the

PERGUSFY S E it S SR LS U L sl

failure. 1Is the failure actually shear failure or is it some organ-

ization of tension cracks that appears as shear failure or is it a

combination of these two effects? The mechanical calculations are not

simple as the cracks seem to be completely interconnected and calcula-
tions such as the network calculations are necessary to deal with
these geometries. We believe the association of intense tension crack
i development with failure is not coincidental and that the second or

i third hypothesis must be operative. This then would justify a close

correspondence between electrical and mechanical properties near failure.
The simple network calculations that we are attempting must be expanded,
however, perhaps by extensions of our embedded network concepts as

used in the development of a theory of electrical conductivity, since

the three dimensional aspects of the problem are extremely important,

but brute force modelling in three dimensions is still too laborious

E to be practical.
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